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Abstract—Speech-to-portrait generation (S2P) plays a crucial
role in speech-driven, human-centered creative content genera-
tion, aiming to synthesize a speaker’s face portrait with identity
consistency from a given speech clip. However, existing S2P
methods can typically only preserve attribute consistency, e.g.,
gender and age, while failing to capture the more important part-
appearance consistency due to the coarse speech-face correlation.
In this work, we propose Fine-portraitist, a novel retrieval-
augmented, easy-to-hard generation framework designed to
tackle this problem. Specifically, Fine-portraitist enhances iden-
tity consistency in S2P through two key innovations: 1) We first
explore the fine-grained speech-face correlation by decomposing
the face portrait into speech-related and speech-unrelated parts.
Based on this, we propose a two-stage, diffusion-based pipeline
to progressively achieve S2P; 2) A retrieval prior is introduced,
selected from a retrieval database based on speech feature sim-
ilarity, providing supplementary external information for more
accurate and realistic generation results. Extensive experiments
on two datasets, i.e., AVSpeech and VoxCeleb, demonstrate that
Fine-portraitist significantly outperforms existing S2P methods.

Index Terms—Speech-to-Portrait, Diffusion model, Retrieval
augmentation generation, Cross-modal learning

I. INTRODUCTION

Speech-to-portrait (S2P) generative models, including
GAN-based [1], [2] and diffusion-based approaches [3], have
undergone significant advancements in recent years. Given an
audio speech, these methods endeavors to create the speaker’s
face portrait that is coherent with an audio speech. This
technique attracts significant public interest in their potential
applications, such as voice-based crimes.

A critical requirement for S2P is maintaining identity
consistency, meaning the generated portrait must not only
reflect the speaker’s attributes but also preserve appearance
consistency. However, as illustrated in Fig. 1, existing one-
stage generators struggle to achieve accurate appearance con-
sistency due to several challenges: 1) these methods often
rely on coarse semantic correlations, such as gender, age,
and ethnicity [4], [5], without a deeper understanding of
which specific facial features can be predicted by speech. This
uncertainty increases model instability, resulting in generated
portraits that lack accurate appearance consistency. 2) The
facial features available in short speech clips are often limited,
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Fig. 1. Comparison with SOTA S2P methods. Our Fine-portraitist can not only
achieve high attribute consistency, i.e., gender, age, but also shows excellent
performance in appearance consistency.

making it difficult to generate precise facial portraits based
solely on speech, especially in real-world scenarios. To address
these challenges, firstly, we conduct a fine-grained analysis
of speech-face correlations, distinguishing between speech-
related and speech-unrelated facial features. considering that,
we propose a progressive generation pipeline for S2P, which
first extracts speech-related facial features from the speech,
followed by the synthesis of speech-unrelated features while
ensuring overall facial coherence. secondly, to further enhance
identity consistency, we incorporate a retrieval face prior as
supplementary information, which helps to more effectively
model facial features, particularly the speech-unrelated com-
ponents.

In summary, the contributions of this work are threefold:
1) We investigate the fine-grained correlation between speech
and facial features and propose a two-stage method that
formulates S2P in an easy-to-hard manner; 2) We design a
retrieval prior to guide S2P, enhancing identity consistency by
leveraging knowledge from the retrieved samples; 3) Extensive
qualitative and quantitative experiments demonstrate that our
Fine-portraitist framework surpasses state-of-the-art (SOTA)
S2P methods in terms of identity consistency.

II. RELATED WORK

A. Face-Voice Correlation

The human voice reveals traits like gender [6], [7], age
[8], [9], and emotion [10], [11], which are used in audio-
visual tasks like identity verification [12], [13] and deepfake
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Fig. 2. Overview of Fine-portraitist. (a) The source speech are sent to calculate the similarity with the candidate speech in the retrieval database. And
the paired face portraits of the most similar ones are fed into the S2P generation framework, serving as prior information for accurate portrait generation.
(b) Our progressive two-stage S2P: The Speech-to-Bottom stage maps the audio speech to speech-related facial bottom part, and the Bottom-to-Upper stage
synthesizes speech-unrelated facial up part with the bottom part and speech driven sources.

detection [14], [15] by analyzing lip-speech synchronization.
Talking head generation [16], [17] also aligns lip movements
with speech for realistic video creation. Prior studies [18], [19]
explored the link between facial features and phonemes, aiding
speech-synchronized 3D face generation. Unlike existing work
focused on semantic or linguistic correlations, our research
investigates the implicit connections between speech and facial
structures in S2P.

B. Speech-to-Portrait Generation

S2P has garnered significant attention in recent years. Some
existing methods [1], [20] leverage the rich facial information
embedded in speech to design face generators using speech
embeddings as input. To preserve shared speaker identity infor-
mation across audio and visual modalities, certain approaches
assign each speaker an identity label, using it to supervise
model training [2], [21], [22]. For speech-to-face generation
with random identities, self-supervised cross-modal identity
matching [23] is used to exploit the shared identity information
between audio and visual data. Motivated by the success
of diffusion models in image generation [24], [25], recent
works [3], [26] have applied latent diffusion model (LDM)
to S2P, achieving higher-quality results compared to GAN-
based methods [1], [2], [20]–[23]. In this work, we propose
a diffusion-based framework designed for accurate identity-
consistent generation, based on a fine-grained investigation of
speech-face correlation in open scenarios.

III. METHODS

A. Exploring Fine-grained Speech-Face Correlation

Human speech is produced by phonatory structures [27],
which are likely crucial for generating facial portraits from
speech. Although both speech and facial features convey
speaker identity information, only certain facial regions di-
rectly involved in phonation, such as the jaw, mouth, and nose,
are hypothesized to be predictable from speech, as hypoth-
esized in our task design. To explicitly test the correlation
between speech and specific facial features, we conduct a
toy experiment. In this experiment, we assess the generation
accuracy of various facial parts, including the eyes, eyebrows,

nose, lips, and jaw, using their respective accuracy as a
measure of correlation with the speech input. If a trained
generator achieves higher accuracy on certain facial parts when
utilizing speech input as opposed to without it, and the results
are statistically significant, we infer that those facial features
are speech-related, and vice versa. Using N = 5000 sam-
ples, we conducted a t-test on the generation results, setting
the significance level at 95%, and subsequently referencing
t(0.95,4999) from the t-distribution table. As shown in Table I,
the probabilities for the jaw (tjaw), mouth (tmouth), and nose
(tnose) exceed t(0.95,4999), indicating statistical significance.
Consequently, we confirm that the bottom face, comprising
the nose and the following part, is speech-related, while the
upper face is not.

TABLE I
THE PAIRED t-TEST RESULTS ON FACIAL PARTS.

t(0.95,4999) tjaw tmouth tnose teyes teyebrows

1.96 2.85 4.94 2.26 0.47 0.32

B. Retrieval Prior-Guided Speech-to-Portrait Generation

Based on the investigation in Section III-A, facial structures
can be divided into speech-related (bottom face) and speech-
unrelated (upper face) parts. Therefore, the goal of this section
is to generate a facial image from the input audio using a
Speech-to-Bottom and Bottom-to-Upper pipeline, as illustrated
in Fig. 2. To further improve the generation process, we
incorporate a retrieval face prior as supplementary information.
Retrieval Prior. RAG is demonstrated effectiveness in mul-
tiple generation tasks [28]–[30], here, we employ RAG to
provide face prior information for S2P enhancement. In detail,
we first evaluate the feature similarities between the given
speech clip and the candidates in the database. For each
speech clip s, we extract Zs = ES(s) as the speech query
feature, where ES is the pre-trained speech encoder [31].
Then, the speech features guide the retrieval process by
selecting the sample with the highest similarity, calculated as:
smax = Max < Zs, Z

ri
s >, where ⟨·, ·⟩ denotes the cosine

similarity between the two feature vectors, and Zri
s is the

speech feature of the ith sample in the retrieval database. The
corresponding face portrait and bottom face portrait with the



TABLE II
COMPARISON RESULTS ON AVSEECH DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. NOTE THAT ↓ INDICATES THAT A SMALLER VALUE IS

PREFERABLE, WHILE ↑ INDICATES THAT A LARGER VALUE IS PREFERABLE.

Method Year Feature Similarity Identity Preservation Retrieval Performance
L1 ↓ L2 ↓ cos ↓ gender (%) ↑ age (%) ↑ R@1 ↑ R@2 ↑ R@5 ↑

Wav2Pix [1] 2019 144.72 24.32 82.51 67.4 41.3 2.46 6.72 14.26
Speech2Face [4] 2019 67.18 3.94 46.97 95.6 65.2 9.17 14.94 28.31
Choi et al. [32] 2019 60.26 3.57 35.89 95.8 69.6 10.84 17.37 32.91
SF2F [22] 2022 89.31 17.49 64.83 72.1 48.9 7.37 13.45 20.72
Kato et al. [3] 2023 46.35 2.73 21.96 96.7 81.3 18.44 28.31 49.24
Fine-portraitist (Ours) - 22.78 0.58 6.26 99.6 89.9 26.23 47.46 72.42

TABLE III
COMPARISON RESULTS ON VOXCELEB DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Year Feature Similarity Identity Preservation Retrieval Performance
L1 ↓ L2 ↓ cos ↓ gender (%) ↑ age (%) ↑ R@1 ↑ R@2 ↑ R@5 ↑

Wav2Pix [1] 2019 137.58 22.19 79.36 74.5 49.6 4.81 9.56 12.94
Speech2Face [4] 2019 66.46 2.77 44.38 96.1 69.4 7.79 14.38 20.14
Wen et al. [2] 2019 59.82 2.41 42.54 97.4 72.5 8.26 15.62 23.51
Choi et al. [32] 2019 56.32 2.24 30.49 97.6 74.8 9.43 16.32 28.67
SF2F [22] 2022 78.45 13.31 58.79 79.3 57.6 9.25 17.17 22.53
Kato et al. [3] 2023 40.11 2.26 18.74 98.1 83.8 16.19 25.64 42.38
Fine-portraitist (Ours) - 18.86 0.64 5.35 99.8 94.7 28.87 49.72 78.94

highest similarity are fed into the pre-trained face encoder EF

to obtain the retrieval priors e.g., the retrieved full face features
Zr
f and the bottom face features Zr

b . To construct the retrieval
database, we simply use all the training data as entities. The
retrieved face priors are concatenated with a noise vector as
input for the S2P generation pipeline.
Speech-to-Bottom Generation. Given a source audio clip,
our goal in this stage is to train a model for bottom face
portrait generation while preserving the identity information
conveyed in the speech condition. We employ a pre-trained
audio extractor ES and face encoder EF to derive speech
representations Zs and bottom face features Zb, respectively.
In this setup, the speech features Zs serve as a basic condition,
while the retrieved bottom face prior Zr

b is introduced as an
additional condition to guide the denoising process of LDM.
The objective function is defined as:

Lb
LDM := EZt

b,Zs,Zr
b ,ϵ,t

[∥ϵ−M(Zt
b, Zs, Z

r
b , t)∥22],

where ϵ represents Gaussian noise, Zt
b is the noised version of

Zb during the diffusion process, and t denotes the time steps.
Bottom-to-Upper Generation. Given that the bottom face
is closely related to speech and there are physiological and
anatomical connections between the bottom and upper face,
we propose a bottom-augmented approach for upper face
generation. Specifically, for a given speech clip, we first utilize
the speech-to-bottom generation module to synthesize the
speech-related bottom face. The features from this generated
bottom face are then used as additional conditions to guide
the learning process for upper face generation. Formally, we
use a pre-trained face encoder EF to extract both the full face
features Zf and the bottom face features Zb. And then the
full face features Zf are corrupted into Zt

f by sequentially
injecting Gaussian noise ϵ at t time steps. The noised features
are concatenated with the bottom-face features Zb and the

retrieved face prior Zr
f along the channel dimension. This

concatenated result is then fed into the LDM to learn the upper
face generation conditioned on the speech input. The objective
function can be formulated as:

Lu
LDM := EZs,Zt

f ,Z
r
f ,ϵ,t

[
∥ϵ−M(Zs, Z

t
f , Z

r
f , Zb, t)∥22

]
.

Finally, the face decoder DF recovers the generated face latent
Ẑf into portrait image.

IV. EXPERIMENTS

A. Datasets
Following existing S2P methods, we conduct our exper-

iments using two datasets: the AVSpeech dataset [33] and
VoxCeleb [34].

B. Implementation Details
We extract 6-second speech segments from video clips and

convert them into spectrograms using the Short-Time Fourier
Transform. The face images are first cropped and then resized
to 256× 256 pixels. We perform collaborative pre-training on
the audio extractor, face encoder, and face decoder to ensure
audio-visual alignment and accurate face reconstruction. The
learning rate for the face encoder and decoder is set to 0.0001,
while the speech encoder is trained with a learning rate of
0.001. In the two-stage generation pipeline, the face encoder,
face decoder, and speech encoder are frozen. The Speech-
to-Bottom and Bottom-to-Upper modules are independently
trained using the Adam optimizer.

C. Evaluation Metrics
Feature Similarity. Following [4], we measure cosine, L1,
and L2 distances between the features of the ground truth
face image and the generated face image, both extracted
using VGGFace [35]. Identity Preservation. We employ the
Face++1 commercial API for face attribute recognition to

1https://www.faceplusplus.com/attributes.



TABLE IV
ABLATION RESULTS ON AVSPEECH DATASET. “ONE STAGE” MEANS DIRECTLY GENERATE FACE PORTRAIT ONLY WITH SPEECH CONDITION. “TWO

STAGE*” MEANS WITHOUT RETRIEVAL PRIOR IN THE TWO STAGE GENERATION PIPELINE.

Method Feature Similarity Identity Preservation Retrieval Performance
L1 ↓ L2 ↓ cos ↓ gender (%) ↑ age (%) ↑ R@1 ↑ R@2 ↑ R@5 ↑

One-stage 44.27 2.38 20.41 96.4 80.3 18.97 29.32 49.96
Two-stage* 35.31 1.46 14.29 97.3 83.1 20.94 27.17 54.82
Fine-portraitist (Ours) 22.78 0.58 6.26 99.6 89.9 26.23 47.46 72.42

evaluate attributes such as age and gender. Age classification is
considered accurate if the age difference between the generated
face image and the ground truth is within 10 years. Retrieval
Performance. Image retrieval involves analyzing the visual
content of a large image database to find images that match the
query image in terms of semantics or similarity [36]. We report
retrieval performance using the Recall@K metric, including
R@1, R@2, and R@5, which indicates whether the top K
retrieved images contain a true match [37].

D. Comparisons with SOTAs

We compare our proposed method with six SOTA S2P
methods, categorized into three groups: 1) CNN-based meth-
ods, such as Speech2Face [4] and SF2F [22]; 2) GAN-based
methods, such as Wav2Pix [1], Wen et al. [2], and Choi
et al. [32]; 3) LDM-based method, Kato et al. [3]. We
perform experiments using the default settings and official
implementations for Wav2Pix [1], Wen et al. [2], Choi et al.
[32], SF2F [22], and Kato et al. [3]. However, as the code for
Speech2Face [4], Choi et al. [32], and Kato et al. [3] is not
available, we reproduce them based on the descriptions pro-
vided in their papers. Additionally, we only compare with Wen
et al. on the VoxCeleb dataset, as the identity information of
speakers is lacking in the AVSpeech dataset.
Quantitative Comparison. The comparison results on
AVSpeech and VoxCeleb datasets are reported in Table II
and Table III, respectively. Our method outperforms all the
competitors in all metrics. Specifically, the cosine distance of
our method achieves 7.26 on the AVSpeech test set and 6.35
on the VoxCeleb test set. The gender recognition accuracy
achieves 99.4 and 99.8 on the two datasets. These results
verify the effectiveness of our approach in producing identity-
preserving portraits.
Qualitative Comparison. The qualitative comparisons shown
in Fig. 3 and Fig. 4 underscore the effectiveness of our
approach in generating realistic outputs that closely align with
the speaker’s attributes. This success is largely due to our
two-stage generation pipeline, which divides the process into
voice-related and voice-unrelated components. By employing
this easy-to-hard strategy, our model achieves superior per-
formance compared to prior methods, resulting in synthesized
portraits that more accurately resemble the speakers.
E. Ablation studies

We conducted ablation studies on the AVSpeech dataset to
validate the effectiveness of various components. The compar-
ison results for different model versions are presented in Table
IV. By comparing the one-stage approach with the two-stage*

Wav2Pix Speech2FaceGround truth Choi et al. SF2F Kato et al. Ours

Fig. 3. Qualitative comparison between our model and previous SOTA
methods on the AVSpeech dataset.

Wav2Pix Speech2Face Wen et al.Ground truth Choi et al. SF2F Kato et al. Ours

Fig. 4. Qualitative comparison between our model and previous SOTA
methods on the Voxceleb dataset.

approach, we observe a performance gain attributed to the use
of the easy-to-hard paradigm. Furthermore, the comparison
between the two-stage* approach and Fine-portraitist shows
that the retrieval prior offers valuable references, leading to
more accurate portrait generation.

V. CONCLUSION

In this work, a novel retrieval-prior-guided generation
framework (Fine-portraitist) is designed to improve the iden-
tity consistency of S2P. We investigate the fine-grained corre-
lation between speech and facial features, which informs the
design of our progressive two-stage generation process. By
incorporating a retrieval face prior, Fine-portraitist achieves
significant improvements in overall performance. Compar-
isons with state-of-the-art models across multiple performance
metrics demonstrate that Fine-portraitist excels in generating
identity-consistent face portraits.
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